Source: National Library of Medicine
Simple Summary
Holstein is the most popular dairy cattle breed worldwide due to its milk yield. When these cows are exposed to heat stress, they reduce feed intake and milk production in order to minimize body heat production. The large variability associated with this response appears to be genetically regulated. Therefore, we combined genomic and marker-assisted technologies with the objective to validate genetic markers associated with milk production and thermotolerance. A genome-wide association study detected six candidate single nucleotide polymorphisms (SNPs) as predictors for milk production in heat-stressed Holstein cows. Only three of these SNPs were further validated as markers for milk production and thermotolerance traits (i.e., rectal temperature and respiratory rate) in two independent Holstein cow populations. Such markers belong to genes that regulate metabolic functions needed to accomplish energy demands and minimal heat production. The results of this study revealed that heat-stressed Holstein cows with favorable markers were able to reduce rectal temperature and respiratory rate, which allowed them to maintain adequate milk production levels. In conclusion, we validated three genetic markers in heat-stressed Holstein dairy cows, which are useful to be included in selection programs to improve milk yield and tolerance to heat stress.
Please click to here to read full article.